Alessandro Bertero
Professore/Professoressa associato/a
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute
- SSD: BIO/13 - biologia applicata
- ORCID: orcid.org/0000-0002-4919-9087
Contatti
- 011-6709544
- n/d
- alessandro.bertero@unito.it
- Molecular Biotechnology Center
Via Nizza 52, 10126, Torino - https://biotec.campusnet.unito.it/persone/alessandro.bertero
- VCard contatti
Presso
- Department of Molecular Biotechnology and Health Sciences
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute
- Corso di Laurea in Biotecnologie
- Corso di Laurea Magistrale in Biotecnologie Mediche - Classe LM-9
- Master Program in Molecular Biotechnology
- Molecular Medicine PhD Program
- PhD in Complex Systems for Quantitative Biomedicine
Prodotti della ricerca
Tutti i miei prodotti della ricercaProdotti della ricerca selezionati
Bertero, A. (2021). RNA biogenesis instructs functional inter-chromosomal genome architecture. Front. Genet. 12, 645863.
Fenix, A.M., Miyaoka, Y., Bertero, A., Blue, S.M., Spindler, M.J., Tan, K.K.B., Perez-bermejo, J.A., Chan, A.H., Mayerl, S.J., Nguyen, T.D., Russell, C.R., Lizarraga, P.P., Truong, A., So, P., Kulkarni, A., Chetal, K., Sathe, S., Sniadecki, N.J., Yeo, G.W., Murry, C.E., Conklin, B.R., and Salomonis, N. (2021). Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat. Commun. 12, 1–14.
Marchiano, S., Hsiang, T.-Y., Khanna, A., Higashi, T., Whitmore, L.S., Bargehr, J., Davaapil, H., Chang, J., Smith, E., Ong, L.P., Colzani, M., Reinecke, H., Yang, X., Pabon, L., Sinha, S., Sniadecki, N.J., Bertero, A., Gale Jr, M., and Murry, C.E. (2021). SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Reports 16, 478–492.
Nakamura, K., Neidig, L.E., Yang, X., Weber, G.J., El-Nachef, D., Tsuchida, H., Dupras, S., Kalucki, F.A., Jayabalu, A., Futakuchi-Tsuchida, A., Nakamura, D.S., Marchianò, S., Bertero, A., Robinson, M.R., Cain, K., Whittington, D., Tian, R., Reinecke, H., Pabon, L., Knollmann, B.C., Kattman, S., Thies, R.S., MacLellan, W.R., and Murry, C.E. (2021). Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Reports 16, 1–15.
Bertero, A., and Rosa-Garrido, M. (2020). Three-dimensional chromatin organization in cardiac development and disease. J. Mol. Cell. Cardiol. 151, 89–105.
Potter, G., Smith, A.S.T., Vo, N.T.K., Muster, J., Weston, W., Bertero, A., Maves, L., Mack, D.L., and Rostain, A. (2020). A More Open Approach Is Needed to Develop Cell-Based Fish Technology: It Starts with Zebrafish. One Earth 3, 54–64.
Bargehr, J., Ong, L.P., Colzani, M., Davaapil, H., Hofsteen, P., Bhandari, S., Gambardella, L., Le Novère, N., Iyer, D., Sampaziotis, F., Weinberger, F., Bertero, A., Leonard, A., Bernard, W.G., Martinson, A., Figg, N., Regnier, M., Bennett, M.R., Murry, C.E., and Sinha, S. (2019). Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat. Biotechnol. 37, 895–906.
Bertero, A., Fields, P.A., Ramani, V., Bonora, G., Yardımcı, G.G., Reinecke, H., Pabon, L., Noble, W.S., Shendure, J., and Murry, C.E. (2019a). Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun. 10, 1538.
Bertero, A., Fields, P.A., Smith, A.S., Leonard, A., Beussman, K., Sniadecki, N.J., Kim, D.-H., Tse, H.-F., Pabon, L., Shendure, J., Noble, W.S., and Murry, C.E. (2019b). Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. J. Cell Biol. 218, 2919–2944.
Marchianò, S., Bertero, A., and Murry, C.E. (2019). Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatr. Cardiol.
Salvarani, N., Crasto, S., Miragoli, M., Bertero, A., Paulis, M., Kunderfranco, P., Serio, S., Forni, A., Lucarelli, C., Dal Ferro, M., Larcher, V., Sinagra, G., Vezzoni, P., Murry, C.E., Faggian, G., Condorelli, G., and Di Pasquale, E. (2019). The K219T-Lamin A/C mutation induces myocardial conduction defects through epigenetic inhibition of SCN5A in a human model of cardiac laminopathy. Nat. Commun. 10, 2267.
Snijders, K.E.K.E., Cooper, J.D.J.D., Vallier, L., and Bertero, A. (2019). Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9. In Methods in Molecular Biology, pp. 185–209.
Bertero, A., and Murry, C.E. (2018). Hallmarks of cardiac regeneration. Nat. Rev. Cardiol. 15, 579–580.
Bertero, A., Yiangou, L., Brown, S., Ortmann, D., Pawlowski, M., and Vallier, L. (2018a). Conditional manipulation of gene function in human cells with optimized inducible shRNA. Curr. Protoc. Stem Cell Biol. 44, 5C.4.1-5C.4.49.
Bertero, A., Brown, S., Madrigal, P., Osnato, A., Ortmann, D., Yiangou, L., Kadiwala, J., Hubner, N.C.N.C., De Los Mozos, I.R., Sadée, C., Lenaerts, A.-S., Nakanoh, S., Grandy, R., Farnell, E., Ule, J., Stunnenberg, H.G., Mendjan, S., and Vallier, L. (2018b). The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555, 256–259.
Leonard, A., Bertero, A., Powers, J.D., Beussman, K.M., Bhandari, S., Regnier, M., Murry, C.E., and Sniadecki, N.J. (2018). Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J. Mol. Cell. Cardiol. 118, 147–158.
Bertero, A., Brown, S., and Vallier, L. (2017). Methods of Cloning. In Basic Science Methods for Clinical Researchers, M. Jalali, M. Jalali, and F.Y.L. Saldanha, eds. (Elsevier), pp. 19–39.
Fogarty, N.M.E., McCarthy, A., Snijders, K.E., Powell, B.E., Kubikova, N., Blakeley, P., Lea, R., Elder, K., Wamaitha, S.E., Kim, D., Maciulyte, V., Kleinjung, J., Kim, J.-S., Wells, D., Vallier, L., Bertero, A., Turner, J.M.A., and Niakan, K.K. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73.
Pawlowski, M., Ortmann, D., Bertero, A., Tavares, J.M., Pedersen, R.A., Vallier, L., and Kotter, M.R.N. (2017). Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Reports 8, 803–812.
Sampaziotis, F., de Brito, M.C., Geti, I., Bertero, A., Hannan, N.R.F.N.R., Vallier, L., Cardoso de Brito, M., Geti, I., Bertero, A., Hannan, N.R.F.N.R., and Vallier, L. (2017a). Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat. Protoc. 12, 814–827.
Sampaziotis, F., Justin, A.W., Tysoe, O.C., Sawiak, S., Godfrey, E.M., Upponi, S.S., Gieseck, R.L., De Brito, M.C., Berntsen, N.L., Gómez-Vázquez, M.J., Ortmann, D., Yiangou, L., Ross, A., Bargehr, J., Bertero, A., Zonneveld, M.C.F., Pedersen, M.T., Pawlowski, M., Valestrand, L., Madrigal, P., Georgakopoulos, N., Pirmadjid, N., Skeldon, G.M., Casey, J., Shu, W., Materek, P.M., Snijders, K.E., Brown, S.E., Rimland, C.A., Simonic, I., Davies, S.E., Jensen, K.B., Zilbauer, M., Gelson, W.T.H., Alexander, G.J., Sinha, S., Hannan, N.R.F., Wynn, T.A., Karlsen, T.H., Melum, E., Markaki, A.E., Saeb-Parsy, K., and Vallier, L. (2017b). Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat. Med. 23, 954–963.
Bertero, A., Pawlowski, M., Ortmann, D., Snijders, K., Yiangou, L., Cardoso de Brito, M., Brown, S., Bernard, W.G., Cooper, J.D., Giacomelli, E., Gambardella, L., Hannan, N.R.F., Iyer, D., Sampaziotis, F., Serrano, F., Zonneveld, M.C.F., Sinha, S., Kotter, M., and Vallier, L. (2016). Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. Development 143, 4405–4418.
Pauklin, S., Madrigal, P., Bertero, A., and Vallier, L. (2016). Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev. 30, 421–433.
Bertero, A., and Vallier, L. (2015). Fucci2a mouse upgrades live cell cycle imaging. Cell Cycle 14, 948–949.
Bertero, A., Madrigal, P., Galli, A., Hubner, N.C., Moreno, I., Burks, D., Brown, S., Pedersen, R.A., Gaffney, D., Mendjan, S., Pauklin, S., and Vallier, L. (2015). Activin/Nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes Dev. 29, 702–717.
Sampaziotis, F., Cardoso de Brito, M., Madrigal, P., Bertero, A., Saeb-Parsy, K., Soares, F.A.C.F.A.C., Schrumpf, E., Melum, E., Karlsen, T.H.T.H., Bradley, J.A.A., Gelson, W.T.H.W.T.H., Davies, S., Baker, A., Kaser, A., Alexander, G.J.G.J., Hannan, N.R.F.N.R.F., Vallier, L., De Brito, M.C., Madrigal, P., Bertero, A., Saeb-Parsy, K., Soares, F.A.C.F.A.C., Schrumpf, E., Melum, E., Karlsen, T.H.T.H., Bradley, J.A.A., Gelson, W.T.H.W.T.H., Davies, S., Baker, A., Kaser, A., Alexander, G.J.G.J., Hannan, N.R.F.N.R.F., and Vallier, L. (2015). Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat. Biotechnol. 33, 845–852.
Bulliard, Y., Narvaiza, I., Bertero, A., Peddi, S., Röhrig, U.F.U.F., Ortiz, M., Zoete, V., Castro-Díaz, N., Turelli, P., Telenti, A., Michielin, O., Weitzman, M.D.M.D., and Trono, D. (2011). Structure-Function Analyses Point to a Polynucleotide-Accommodating Groove Essential for APOBEC3A Restriction Activities. J. Virol. 85, 1765–1776.
Ferretti, R., Sbroggiò, M., Di Savino, A., Fusella, F., Bertero, A., Michowski, W., Tarone, G., and Brancaccio, M. (2011). Morgana and melusin: two fairies chaperoning signal transduction. Cell Cycle 10, 3678–3683.
Sbroggiò, M., Bertero, A., Velasco, S., Fusella, F., De Blasio, E., Bahou, W.F., Silengo, L., Turco, E., Brancaccio, M., and Tarone, G. (2011a). ERK1/2 activation in heart is controlled by melusin, focal adhesion kinase and the scaffold protein IQGAP1. J. Cell Sci. 124, 3515–3524.
Sbroggiò, M., Carnevale, D., Bertero, A., Cifelli, G., De Blasio, E., Mascio, G., Hirsch, E., Bahou, W.F., Turco, E., Silengo, L., Brancaccio, M., Lembo, G., and Tarone, G. (2011b). IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload. Cardiovasc. Res. 91, 456–464.
Insegnamenti
- BIOTECHNOLOGY IN AND TOWARDS ENVIROMENTAL SUSTAINABILITY (BIO0249)
Corso di Laurea in Biotecnologie - BIOTECHNOLOGY IN AND TOWARDS ENVIRONMENTAL SUSTAINABILITY (BIO0249 Pds GEN)
Master Program in Molecular Biotechnology - Biology for sustainability (BIO0249A)
Corso di Laurea in Biotecnologie - Biology for sustainability (BIO0249A Pds GEN)
Master Program in Molecular Biotechnology - GENETICA (INT0644)
Corso di Laurea in Biotecnologie - TIROCINIO di GENETICA MOLECOLARE (SME0017)
Corso di Laurea Magistrale in Biotecnologie Mediche - Classe LM-9
Temi di ricerca
Group leader of the Armenise-Harvard Laboratory of Heart Engineering & Developmental Genomics et al (HEDGe lab) at the Molecular Biotechnology Center of the University of Turin, and Associate Professor in the Department of Molecular Biotechnology and Health Sciences.
Our long term vision is improving human sustainable wellbeing. We work to achieve this goal through the integrative application of stem cell biology, gene editing, genomics, and bioengineering to: (1) elucidate the genetic underpinnings of cardiac disease, the #1 killer worldwide; (2) develop regenerative medicine therapy for congenital heart disease, the most common life-threatening malformation in newborns; and, last but not least, (3) provide a cell-based alternative to factory farming, the main cause of biodiversity loss and a central contributor to climate change. These seemingly distinct aspects are actually deeply interconnected: elucidating the gene regulatory mechanisms behind cardiac development and disease provides the knowledge needed to develop cells and tissues for heart remuscularization, which in turn can be produced in even larger scale from animal cells for human consumption. Overall, our work has the potential to improve human life on earth from a holistic perspective: cradle to table and all the way to rocking chair.
Gruppi di ricerca